Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 13(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34415046

RESUMO

Copper (Cu) is a key transition metal that is involved in many important biological processes in a cell. Cu is also utilized by the immune system to hamper pathogen growth during infection. However, genome-level knowledge on the mechanisms involved in adaptation to Cu stress is limited. Here, we report the results of a genome-wide reverse genetic screen for Cu-responsive phenotypes in Escherichia coli. Our screen has identified novel genes involved in adaptation to Cu stress in E. coli. We detected multiple genes involved in the biosynthesis and uptake of enterobactin, a siderophore utilized for high-affinity TonB-dependent acquisition of iron (Fe), as critical players in survival under Cu intoxication. We demonstrated the specificity of Cu-dependent killing by chelation of Cu and by genetic complementation of tonB. Notably, TonB is involved in protection from Cu in both laboratory and uropathogenic strains of E. coli. Cu stress leads to increased expression of the genes involved in Fe uptake, indicating that Fur regulon is derepressed during exposure to excess Cu. Trace element analyses revealed that Fe homeostasis is dysregulated during Cu stress. Taken together, our data supports a model in which lack of enterobactin-dependent Fe uptake leads to exacerbation of Cu toxicity, and elucidates the intricate connection between the homeostasis of Cu and Fe in a bacterial cell.


Assuntos
Cobre/metabolismo , Enterobactina/metabolismo , Escherichia coli/genética , Estudo de Associação Genômica Ampla , Ferro/metabolismo , Estresse Fisiológico , Transporte Biológico , Escherichia coli/metabolismo , Genes Bacterianos , Homeostase
2.
EcoSal Plus ; 9(2): eESP00142020, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34125582

RESUMO

Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.


Assuntos
Escherichia coli , Salmonella enterica , Animais , Cobre , Escherichia coli/genética , Homeostase , Humanos , Salmonella enterica/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...